National Repository of Grey Literature 4 records found  Search took 0.01 seconds. 
Preparation and Characterization of Magnetic Carriers from Hypercrosslinked Polystyrene Microspheres and their Application in a Biosensor.
Šálek, Petr ; Šňupárek, Jaromír (referee) ; Šafařík,, Ivo (referee) ; Horák, Daniel (advisor)
With the aim to develop and characterize a functionalized highly magnetic polymer carrier of micrometer size and of a narrow particle size distribution that will be suitable for biological application, hypercrosslinked microspheres were prepared. Simultaneously, the relation between structure and properties of product was observed. Condition of dispersion polymerization were optimized to obtain starting monodisperse poly(styrene-co-divinylbenzene) [P(St-DVB)] microspheres. The P(St-DVB) microspheres of different degree of crosslinking were prepared and effect of some polymerization parameters such as type of solvent, initiator, concentration and mode of DVB addition on morphology, size and particle size distribution were investigated. The starting microspheres were hypercrosslinked to obtain microporous inner structure. Hyperosslinked particles had very large specific surface area (> 1000 m2/g) and a high content of micropores (ca. 0.6 ml/g). First, P(St-DVB) microspheres were chloromethylated using three different chloromethylation agents to regulate their porous properties. Hypercrosslinking was achieved by the addition of stannic chloride as a catalyst and by increasing a temperature. The hypercrosslinked microspheres were then functionalized with sulfo- or aminogroups. The functional groups captured precipitated iron oxide inside the porous structure of the microspheres and also served as a reactive site for intended immobilization of the protein. A solution of ferrous and ferric chloride was imbibed under vacuum into the porous structure and the iron oxide was precipitated by an aqueous ammonia solution. Finally, the magnetic functionalized hypercrosslinked micropsheres were integrated into a biosensor for qualitative detection of ovalbumin.
Preparation Techniques and Characterization of Electrodes with Nanostructured Surface
Hrdý, Radim ; Trnková, Libuše (referee) ; Janderka,, Pavel (referee) ; Hubálek, Jaromír (advisor)
Nowadays, nanostructures fixed on solid substrates and colloidal nanoparticles permeate through all areas of human life, in area of sensors and detection as well. This dissertation thesis deals with the fabrication of nanostructures on the surface of planar electrodes via self-ordered nanoporous template of aluminum trioxide. The nanofabrication, as one of many possible techniques, is used to increase the active surface area of electrodes by creating unique surface types with specific properties. These electrodes are very perspective in the applications, such as biomolecules electrochemical detection and measurement. The transformation of aluminum layer into non-conductive nanoporous template in the process of anodic oxidation is a fundamental technique employed to obtain the array of nanostructures in this thesis. The fabrication of high quality nanoporous membranes with narrow pore size distribution on various types of metallic multilayers is one of the key experimental parts in this work. Several problems associated with the production of the thin-film systems, including the dissolving the barrier oxide layer, are discussed and solved. Another part of this work deals with the use of nanoporous membrane as a template for the production of metallic nanostructures via electrochemical metal ions deposition directly into the pores. The obtained nanostructures as nanowires, nanorods or nanodots are characterized by the scanning electron microscopy and energy-dispersive or wavelength X-ray spectroscopy. The electrode surface, modified by gold nanostructures suitable for the detection of biomolecules, has been chosen for the electrochemical measurements, due to the gold biocompatibility. The nanostructured electrodes were characterized by electrochemical impedance spectroscopy and cyclic voltammetry. The effect of nanostructured surface geometrical parameters, including the size of the electrochemically active area, on the results of electrochemical measurements has been observed and compared to flat gold electrodes. Two model biomolecules, namely guanine and glutathione, have been chosen for the study of potential application of these nanostructures in biosensors.
Preparation Techniques and Characterization of Electrodes with Nanostructured Surface
Hrdý, Radim ; Trnková, Libuše (referee) ; Janderka,, Pavel (referee) ; Hubálek, Jaromír (advisor)
Nowadays, nanostructures fixed on solid substrates and colloidal nanoparticles permeate through all areas of human life, in area of sensors and detection as well. This dissertation thesis deals with the fabrication of nanostructures on the surface of planar electrodes via self-ordered nanoporous template of aluminum trioxide. The nanofabrication, as one of many possible techniques, is used to increase the active surface area of electrodes by creating unique surface types with specific properties. These electrodes are very perspective in the applications, such as biomolecules electrochemical detection and measurement. The transformation of aluminum layer into non-conductive nanoporous template in the process of anodic oxidation is a fundamental technique employed to obtain the array of nanostructures in this thesis. The fabrication of high quality nanoporous membranes with narrow pore size distribution on various types of metallic multilayers is one of the key experimental parts in this work. Several problems associated with the production of the thin-film systems, including the dissolving the barrier oxide layer, are discussed and solved. Another part of this work deals with the use of nanoporous membrane as a template for the production of metallic nanostructures via electrochemical metal ions deposition directly into the pores. The obtained nanostructures as nanowires, nanorods or nanodots are characterized by the scanning electron microscopy and energy-dispersive or wavelength X-ray spectroscopy. The electrode surface, modified by gold nanostructures suitable for the detection of biomolecules, has been chosen for the electrochemical measurements, due to the gold biocompatibility. The nanostructured electrodes were characterized by electrochemical impedance spectroscopy and cyclic voltammetry. The effect of nanostructured surface geometrical parameters, including the size of the electrochemically active area, on the results of electrochemical measurements has been observed and compared to flat gold electrodes. Two model biomolecules, namely guanine and glutathione, have been chosen for the study of potential application of these nanostructures in biosensors.
Preparation and Characterization of Magnetic Carriers from Hypercrosslinked Polystyrene Microspheres and their Application in a Biosensor.
Šálek, Petr ; Šňupárek, Jaromír (referee) ; Šafařík,, Ivo (referee) ; Horák, Daniel (advisor)
With the aim to develop and characterize a functionalized highly magnetic polymer carrier of micrometer size and of a narrow particle size distribution that will be suitable for biological application, hypercrosslinked microspheres were prepared. Simultaneously, the relation between structure and properties of product was observed. Condition of dispersion polymerization were optimized to obtain starting monodisperse poly(styrene-co-divinylbenzene) [P(St-DVB)] microspheres. The P(St-DVB) microspheres of different degree of crosslinking were prepared and effect of some polymerization parameters such as type of solvent, initiator, concentration and mode of DVB addition on morphology, size and particle size distribution were investigated. The starting microspheres were hypercrosslinked to obtain microporous inner structure. Hyperosslinked particles had very large specific surface area (> 1000 m2/g) and a high content of micropores (ca. 0.6 ml/g). First, P(St-DVB) microspheres were chloromethylated using three different chloromethylation agents to regulate their porous properties. Hypercrosslinking was achieved by the addition of stannic chloride as a catalyst and by increasing a temperature. The hypercrosslinked microspheres were then functionalized with sulfo- or aminogroups. The functional groups captured precipitated iron oxide inside the porous structure of the microspheres and also served as a reactive site for intended immobilization of the protein. A solution of ferrous and ferric chloride was imbibed under vacuum into the porous structure and the iron oxide was precipitated by an aqueous ammonia solution. Finally, the magnetic functionalized hypercrosslinked micropsheres were integrated into a biosensor for qualitative detection of ovalbumin.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.